clc, clear all, close all y0=[1;-1.57];xini=1e-15;xfin=60; [x,y] = ode113(@vdp1,[xini xfin],y0); de=1e-4;while y(length(y),2) > 0,y0(2,1)=y0(2,1)-de; [x,y] = ode113(@vdp1,[xini xfin],y0); if y(length(y),2) < 0,y0(2,1)=y0(2,1)+de; [x,y] = ode113(@vdp1,[xini xfin],y0); de=de/2;elseif y(length(y),2) < 0.0001, y(length(y),2),plot(x,y(:,1),'.k','MarkerSize',15) xlabel('x','FontSize',18),ylabel('\chi(x)','FontSize',18) set(gca,'FontSize',18),axis( [ 0 25 0 1 ] ); save tempX x,yy=y(:,1);save tempYeYl yy,return,end,end function dydt = vdp1(x,y) dydt = [y(2); y(1).^(3/2)./(x.^(0.5))]; clc,clear all,close all load tempX,load tempYeYl Z=2; %% Definindo número atômico cf=(3/10)*(3*pi^2)^(2/3); alpha=((4*pi)^(2/3))*(3/(5*cf))*Z^(1/3); ChiX=yy./x;Rho=(32/(9*pi^3))*(ChiX).^(3/2)*Z^2; norm=trapz(x,Rho.*x.^2)*4*pi/alpha^3 %norm deve ser igual a Z kernelcin=4*pi*Rho.^(5/3).*x.^2/alpha^3; Ecin=cf*trapz(x,kernelcin) %% Energia cinética kernelVen = -Z*4*pi*Rho.*x/alpha.^2;%% E elétron-núcleo Ven=trapz(x,kernelVen),for i=1:size(Rho,1);for j=1:size(Rho,1); Rho12(i,j)=Rho(i)*Rho(j);end,end,x1=x;x2=x'; for i=1:size(x1,1);for j=1:size(x2,2); X12(i,j)=(x1(i)+x2(j)-abs(x1(i)-x2(j)))*x1(i)*x2(j); end,end,kernelVee=(4*(pi)^2/(alpha^5))*Rho12.*X12; Vee=trapz(x2,trapz(x1,kernelVee,1),2) %% E elétron-elétron Etot=Ecin+Ven+Vee %% Energia total